哈尔滨工业大学(深圳)黄燕教授Angew:定制具有质子储存特性的聚合物无机双层SEI用于高性能水系锌金属电池
在水系锌离子电池中,传统的固体电解质界面(SEI)主要作为物理屏障来防止析氢反应(HER),然而这种SEI在高电流密度下由于锌沉积不均匀而容易发生结构退化。在此,我们提出了一种通过苯胺调控的电解质实现的聚合物-无机双层SEI的原位结构设计,该SEI具有质子捕获特性。Zn(OTF)₂相对于苯胺具有更低的最低未占据分子轨道(LUMO)能级,从而形成了以ZnF₂为内层、聚苯胺(PANI)为外层的双层结构。具有高刚性和强度的ZnF₂能够有效抑制锌枝晶的生长。与此同时,PANI调节电流分布,最小化浓度梯度,并延缓枝晶生长的Sand时间。此外,PANI中的=N⁻基团能够可逆地捕获质子,从而抑制析氢反应。凭借这种双层SEI,锌负极在40 mA cm⁻²和40 mAh cm⁻²(放电深度DOD=70.8%)的条件下实现了126小时的出色循环寿命,解决了单层无机SEI在这些条件下无法循环的瓶颈问题。具有双层SEI的Zn||NaVO软包电池展现出1.2 Ah的高容量和350小时的循环寿命,容量保持率为78%。在-30°C时,同一电池能够提供335 mAh的容量和507小时的循环寿命,容量保持率为72%,这归功于电解质中氢键的调控机制。我们的发现为设计具有定制结构和功能的SEI提供了深刻的见解,为下一代高性能先进电池的发展铺平了道路。

近日,哈尔滨工业大学(深圳)黄燕课题组等人利用苯胺改性电解液在锌表面定制了具有质子储存特性的聚合物无机双层SEI,并且利用DFT计算解释了双层结构形成的原因。通过对称电池、仿真模拟以及原位红外等手段,阐释了双层SEI在高电流密度下抑制锌枝晶生长的原因和SEI层的可逆质子储存特性。最后,得益于双层SEI对高电流密度下锌枝晶的抑制以及可逆质子储存功能,构建了可在高电流密度和面积容量下稳定循环的锌对称、Zn||NVO扣式和软包电池。该文章发表在国际顶级期刊Angew. Chem. Int. Ed上。崔芒伟为本文第一作者。
The button and pouch Zn||NaVO batteries were assembled in the order of NaVO cathode, electrolyte,glass fiber separators (Olegeeino GF/D3227), electrolyte, Zn anode, and pouch batteries need to beencapsulated with aluminum-plastic film. For Zn||Cu and Zn||Zn symmetric batteries, the process is liketo that of the button Zn||NaVO, except the NaVO electrode is substituted with Cu foil and Zn foil,respectively. Electrochemical characterizations, including cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel plots, electrochemical impedance spectroscopy (EIS), and chronoamperometric (CA) measurements, were conducted on a Shanghai Chenhua CHI760e workstation.To assess the electrolyte's stable electrochemical window, a three-electrode test system was employed,featuring titanium foil as the working electrode, graphite as the counter electrode, and a standard Ag/AgCl (3 M KCl) electrode serving as the reference. LSV curves were recorded at a scan rate of 10 mV s-1, withliquid junction potentials between the reference and main electrolyte compensated using a KCl-saturated salt bridge electrode. Tafel plots facilitated the evaluation of corrosion potentials and currents of Zn anode in two electrolytes. The ionic conductivities of two electrolyte at various temperatures were calculated according to EIS data. The batteries were assembled with two plates of stainless steel as cathode and anode. The ionic conductivity σ was calculated by the equation: σ=l/RA, where l, R, and A represent the thickness, the bulk resistance, and the test area, respectively. Cycling, rate, and galvanostatic charge/discharge (GCD) profiles for all batteries were recorded using a LANHE CT3001A battery tester(LANHE, Wuhan). Unless specified, all electrochemical data were acquired at ambient temperature.








本工作通过苯胺调制电解质,在锌表面原位构想出了具有质子容纳能力的双层/P-F SEI。在锌沉积过程中,量身定制的双层SEI提高表面过电势,降低成核能垒促进更均匀、更精细的成核。此外,双层SEI调节锌表面电流分布,减小Zn2+浓度梯度,在高电流和高面积容量条件下有效延缓 Zn枝晶生长。原位红外证实了双电层SEI中丰富的=N基团具有可逆的质子储存和释放能力,抑制了电解液HER。因此,受双层SEI保护的对称锌电池和锌||NVO全电池在苛刻条件下表现出卓越的循环能力。这项研究强调了SEI结构和功能在操纵电池电化学性能方面的关键作用,为在高电流密度、高面积容量和高放电深度下工作的可逆锌电池提供了一种新的设计范例。我们预计这一设计原理可扩展提高各种电池系统的性能。

Mangwei Cui, Lidong Yu, Jin Hu, Sisi He, Chunyi Zhi, Yan Huang, Tailored Polymer-Inorganic Bilayer SEI with Proton Holder Feature for Aqueous Zn Metal Batteries, Angewandte Chemie International Edition, 2025, https://doi.org/10.1002/anie.202423531